On Recognizing Actions in Still Images via Multiple Features

نویسندگان

  • Fadime Sener
  • Cagdas Bas
  • Nazli Ikizler-Cinbis
چکیده

We propose a multi-cue based approach for recognizing human actions in still images, where relevant object regions are discovered and utilized in a weakly supervised manner. Our approach does not require any explicitly trained object detector or part/attribute annotation. Instead, a multiple instance learning approach is used over sets of object hypotheses in order to represent objects relevant to the actions. We test our method on the extensive Stanford 40 Actions dataset [1] and achieve significant performance gain compared to the state-of-the-art. Our results show that using multiple object hypotheses within multiple instance learning is effective for human action recognition in still images and such an object representation is suitable for using in conjunction with other visual features.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recognizing human actions in still images: a study of bag-of-features and part-based representations

Recognition of human actions is usually addressed in the scope of video interpretation. Meanwhile, common human actions such as “reading a book”, “playing a guitar” or “writing notes” also provide a natural description for many still images. In addition, some actions in video such as “taking a photograph” are static by their nature and may require recognition methods based on static cues only. ...

متن کامل

Hierarchical Spatial Sum-Product Networks for Action Recognition in Still Images

Recognizing actions from still images is popularly studied recently. In this paper, we model an action class as a flexible number of spatial configurations of body parts by proposing a new spatial SPN (Sum-Product Networks). First, we discover a set of parts in image collections via unsupervised learning. Then, our new spatial SPN is applied to model the spatial relationship and also the high-o...

متن کامل

Automated Detection of Multiple Sclerosis Lesions Using Texture-based Features and a Hybrid Classifier

Background: Multiple Sclerosis (MS) is the most frequent non-traumatic neurological disease capable of causing disability in young adults. Detection of MS lesions with magnetic resonance imaging (MRI) is the most common technique. However, manual interpretation of vast amounts of data is often tedious and error-prone. Furthermore, changes in lesions are often subtle and extremely unrepresentati...

متن کامل

Understanding Human Actions in Still Images a Dissertation Submitted to the Department of Computer Science and the Committee on Graduate Studies of Stanford University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

Many human actions, such as “playing violin” and “taking a photo”, can be well described by still images, because of the specific spatial relationship between humans and objects, as well as the specific human and object poses involved in these actions. Recognizing human actions in still images will potentially provide useful information in image indexing and visual search, since a large proport...

متن کامل

Hand Gesture Recognition from RGB-D Data using 2D and 3D Convolutional Neural Networks: a comparative study

Despite considerable enhances in recognizing hand gestures from still images, there are still many challenges in the classification of hand gestures in videos. The latter comes with more challenges, including higher computational complexity and arduous task of representing temporal features. Hand movement dynamics, represented by temporal features, have to be extracted by analyzing the total fr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012